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Abstract. A fundamental solution and a Green’s function are obtained for a system of second-order elliptic
partial differential equations with variable coefficients. Both the fundamental solution and the Green’s function
are suitable for facilitating the numerical solution of boundary-value problems in a number of practical areas.
Some particular areas of application are outlined.
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1. Introduction

This paper is concerned with boundary-value problems governed by a system of linear second-
order partial differential equations with variable coefficients. The solution for this class of
boundary-value problems may be written in terms of a boundary-integral equation with the
kernel of the equation consisting of a fundamental solution or Green’s function for the system.
For the boundary-integral equation to be of any practical use for the numerical solution of
the boundary-value problems in question, it is necessary to obtain a fundamental solution or
Green’s fuction in a form which readily yields numerical values. To obtain such a fundamental
solution or Green’s function for a system with quite general variable coefficients is a difficult
task. The purpose of the present paper is to obtain a fundamental solution and a particular
Green’s function for the system in forms which are suitable for numerical calculations for a
restricted but important class of variable coefficients. The solutions obtained may be used in
the boundary-integral equation to solve a wide class of practical problems. Three such classes
of problems are specifically indicated in the paper.

2. The boundary-value problem

Consider the system of partial differential equations

∂

∂xj

[
aijkl(x)

∂φk(x)

∂xl

]
= 0, for i = 1, 2, . . . , N, (1)

where in a domain � in R2 with boundary ∂� the φk(x) for k = 1, 2, . . . , N with x =
(x1, x2) are defined and twice differentiable functions of the dependent variables x1 and x2

and where the summation convention applies for all lower case italic subscipts. In � the
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coefficients aijkl(x) are non-negative twice differentiable functions of x1 and x2 which satisfy
the symmetry conditions

aijkl = aklij (2)

and also sufficient conditions for the system of partial differential equations to be elliptic
throughout �.

A solution to (1) is sought which is valid in the region � with boundary ∂�. On ∂� either
the dependent variables φk or the Pi are specified where

Pi = aijkl

∂φk

∂xl

nj . (3)

where n denotes the outward pointing normal to the boundary ∂�. Further, if Pi is specified
at all points of the boundary ∂�, then for a well-posed problem it must be such that∫

∂�

Pids = 0. (4)

3. Boundary-integral equation

A boundary-integral equation for the solution of the problem specified in Section 2 may be
readily obtained in the form (see for example Clements [1])

λφj(x0) =
∫

∂�

[
Pi(x)�ij (x, x0) − �ij (x, x0)φi(x)

]
dS(x), (5)

where x0 = (ξ1, ξ2) is the source point, λ = 0 if x0 /∈ �, λ = 1 if x0 ∈ � and λ = 1
2 if

x0 ∈ ∂� and ∂� has a continuously turning tangent at x0. Also Pi is defined by Equation (3)
and �ij (x, x0) is a fundamental solution of (1) so that it satisfies the system of equations

∂

∂xj

[
aijkl(x)

∂�km

∂xl

]
= δimδ(x − x0), (6)

where δim denotes the Kronecker delta and δ the Dirac delta function. Also in (5) the �ij (x, x0)

is given by

�im = aijkl

∂�km

∂xl

nj . (7)

The usefulness of the boundary-integral Equation (5) for generating a numerical solution of
the boundary-value problem of section 2 hinges on the availability of a solution �ij (x, x0) of
(6) in a form which readily yields numerical values. To obtain such a solution for quite general
coefficients aijkl is a difficult task. In the following sections a solution suitable for numerical
computations is obtained for a restricted class of coefficients.
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4. A fundamental solution

The coefficients in (1) are now required to take the form

aijkl(x) = a
(0)
ijklg(x), (8)

where the a
(0)
ijkl are constants and g(x1, x2) is a twice differentiable function of the variables x1

and x2. Also g(x) > 0 in � and in addition to the symmetry condition (2) the a
(0)
ijkl are required

to satisfy the condition

a
(0)
ijkl = a

(0)
ilkj . (9)

Equation (6) thus may be written

a
(0)
ijkl

∂

∂xj

[
g(x)

∂�km

∂xl

]
= δimδ(x − x0). (10)

Consider the transformation

�km(x, x0) = g−1/2(x)	km(x, x0). (11)

Use of (11) in (10) provides the equation

g1/2 a
(0)
ijkl

∂2	km

∂xj ∂xl

+ a
(0)
ijkl

∂g1/2

∂xj

∂	km

∂xl

− a
(0)
ijkl

∂g1/2

∂xl

∂	km

∂xj

(12)

− 	km a
(0)
ijkl

∂2g1/2

∂xj∂xl

= δimδ(x − x0),

where by virtue of (9) this equation reduces to

g1/2a
(0)
ijkl

∂2	km

∂xj∂xl

− 	kma
(0)
ijkl

∂2g1/2

∂xj∂xl

= δimδ(x − x0) . (13)

Thus if

g1/2(x)a
(0)
ijkl

∂2	km

∂xj ∂xl

= δimδ(x − x0) (14)

and

a
(0)
ijkl

∂2g1/2

∂xj ∂xl

= 0 , (15)

then (13) will be satisfied. Hence when g(x) satisfies the system (15) the transformation given
by (11) transforms the linear system with variable coefficients (10) to the linear system (14).

Equation (15) consists of a system of N constant coefficients partial differential equations
in the one dependent variable g1/2. A solution to this system may be written as a linear function
of the two independent variables x1 and x2. Thus for this solution g may be written in the form

g(x) = (α0 + α1x1 + α2x2)
2, (16)

where the αi for i = 0, 1, 2 are constants which may be used to fit the coefficients aijkl(x) =
a

(0)
ijklg(x) to given numerical data associated with a particular application.
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Although the Equation (15) will always be satisfied by taking g(x) in the form given by
(16), it is appropriate to note at this stage that for particular classes of equations of the type
(1) the tranformation from (10) to (14) may be achieved for a more general class of functions
g(x).

From Equation (14) it follows that

a
(0)
ijkl

∂2	km

∂xj ∂xl

= g−1/2(x0)δimδ(x − x0), (17)

where the properties of the delta function have been employed to change the variable x to x0

in the first term on the right hand side of (17).
Let 	∗

ij (x, x0) denote the fundamental solution of the system (1) with aijkl(x) = a
(0)
ijkl so

that 	∗
ij (x, x0) satisfies the equation

a
(0)
ijkl

∂2	∗
km

∂xj ∂xl

= δimδ(x − x0). (18)

Now from (17) and (18) it follows that

	km(x, x0) = g−1/2(x0)	
∗
km(x, x0) (19)

and from (11) and (19) the fundamental solution of (1) satisfying (6) may be written in the
form

�km(x, x0) = g−1/2(x)g−1/2(x0)	
∗
km(x, x0). (20)

The fundamental solution 	∗
km(x, x0) which satisfies (18) is given by (see Clements and

Rizzo [2] and Clements [1])

	∗
im(x, x0) = 1

2π
Re

[
N∑

α=1

AiαNαk log(zα − cα)

]
dkm, (21)

where Re denotes the real part of a complex number, zα = x1 + ταx2 and cα = ξ1 + ταξ2,
where τα are the N roots with positive imaginary part of the polynomial of degree 2N in τ

|a(0)

i1k1 + a
(0)

i2k1τ + a
(0)

i1k2τ + a
(0)

i2k2τ
2| = 0. (22)

The Aiα occurring in (21) are the solutions of the system of homogeneous linear algebraic
equations(

a
(0)
i1k1 + a

(0)
i2k1τα + a

(0)
i1k2τα + a

(0)
i2k2τ

2
α

)
Akα = 0. (23)

Also the Nαk, and dkm in (21) are defined by

δik =
N∑

α=1

AiαNαk, (24)

Lijα = (a
(0)

ijk1 + ταa
(0)

ijk2)Akα, (25)

δim = −1

2
i

N∑
α=1

{
Li2αNαk − Li2αNαk

}
dkm, (26)
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where the bar denotes the complex conjugate and i denotes the square root of minus one.
Equation (20) together with (21) provides the fundamental solution for a wide class of

important equations which are special cases of the system (1). Examples include the equation
governing the static two-dimensional temperature field in a class of inhomogeneous isotropic
and anisotropic materials and the equations governing steady-state antiplane, plane and gen-
eralised plane deformations of a class of inhomogeneous elastic materials. In all of these
cases Equation (20) together with (21) provides a fundamental solution which readily yields
numerical values. In particular, once the coefficients a

(0)
ijkl are known then τα,Akα,Nαj and djm

may be calculated in a systematic way through Equations (22) through (26). The Equation (20)
together with (21) then provides a simple analytical form for the fundamental solution from
which numerical values may be easily obtained. Furthermore the fundamental solution (20)
together with (21) may be readily used in the boundary-integral formulation (5) to obtain the
numerical solution of boundary-value problems governed by the appropriate special cases of
the system (1).

5. A Green’s function

Now it is clear that in the case when the coefficients aijkl are of the form given by (8) and (9) a
solution to (10) may consist of the particular solution (20) plus any solution of the associated
homogeneous system (1). Here such a solution is considered in order to provide a Green’s
function for a particular class of boundary-value problems. In particular the Green’s function
will be written in the form

�km = �
(1)
km + �

(2)
km, (27)

where �
(1)
km is given by (20) and (21) and �

(2)
km will be a solution to (1) chosen so that �km

satisfies given conditions on a specified boundary in R2.
Consider a region � in R2 with boundary ∂� = ∂�1 + ∂�2 where ∂�2 lies along x2 = 0.

Here �km is chosen to be zero on ∂�2. Image considerations indicate that the appropriate
choice of �

(2)
km is

�
(2)
km = − 1

2π
g−1/2(x)g−1/2(x0)Re




∑
α

AkαNαq

∑
β

AqβNβj log(zα − cβ)


 djm. (28)

As with (20) the expression (28) readily provides numerical values of �
(2)
km. The Green’s

function given by (27), (20), (21) and (28) is suitable for use in the boundary-integral equa-
tion formulation for problems where the region under consideration has a large part of its
boundary lying along the line x2 = 0. In such cases use of this Green’s function can provide
a considerable simplification in the evaluation of the integral along ∂�2 in the boundary-
integral Equation (5). It is particularly suitable when the boundary lying along x2 = 0 extends
to infinity. It is worth noting that although in this case the Green’s function has been chosen
to be zero on x2 = 0 the use of the method of superposition may be employed to solve a wide
class of problems where a significant part of the boundary lies on x2 = 0 and the dependent
variable φk in (1) is not zero for a relatively small interval on x2 = 0 (see Clements and Jones
[3]).
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6. Applications

6.1. PLANE ANISOTROPIC THERMOSTATICS

In (1) put N = 1, φ1 = T and a1i1j = λij for i, j = 1, 2 so that (1) becomes

∂

∂xi

[
λij (x)

∂T (x)

∂xj

]
= 0, (29)

which, referred to a Cartesian frame Ox1x2x3, is the equation governing the two dimensional
static temperature field T (x) in an anisotropic material with conductivity coefficients λij

which satisfy the symmetry property λij = λji . In this case (8) and (22) through (26) provide

λij (x) = λ
(0)
ij g(x), (30)

τ1 =
−λ

(0)

12 + i
(
λ

(0)

11 λ
(0)

22 − λ
(0) 2
12

)1/2

λ
(0)

22

, (31)

A11 = 1, N11 = 1, L1i1 = λ
(0)

i1 + τ1λ
(0)

i2 for i = 1, 2.

Also the fundamental solution (20) takes the form

�11(x, x0) = −g−1/2(x)g−1/2(x0)

2π iλ(0)
22 (τ1 − τ 1)

Re
[
log(z1 − c1)

]
, (32)

where z1 = x1 + τ1x2, c1 = ξ1 + τ1ξ2 and from (15) g1/2(x) satisfies

λ
(0)
ij

∂2g1/2

∂xj ∂xl

= 0 , (33)

which has the general solution

g(x) = [ReF(z1)]
2 , (34)

where F(z1) is an arbitrary analytic function of the complex variable z1. This arbitrary ana-
lytic function may be chosen to best approximate given numerical data for the conductivity
coefficients.

Setting φ1(x) = T (x) the boundary-integral equation (5) for plane anisotropic thermostat-
ics becomes

λT (x0) =
∫

∂�

[
P1(x)�11(x, x0) − �11(x, x0)T (x)

]
dS(x) , (35)

where �11 is given by (32) and from (3) and (7) the heat flux P1 and the function �11 are given
by

P1 = λij

∂T

∂xj

ni, (36)

�11 = λij

∂�11

∂xj

ni . (37)
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Once the constants λ
(0)
ij are known and the arbitrary analytic function F(z1) is specified, the

g(x) may be obtained from (34) and then (32) and (37) readily yield numerical values of the
fundamental solution �11 and �11 for any given values of z1 and c1.

For anisotropic thermostatics the Green’s function given by (27), (20) and (28) takes the
form

�11(x, x0) = −g−1/2(x)g−1/2(x0)

2π iλ(0)
22 (τ1 − τ 1)

Re
[
log(z1 − c1) − log(z1 − c1)

]
. (38)

This Green’s function may be advantageously employed in the integral equation (38) in
cases when a substantial section of the boundary ∂� lies on x2 = 0 and along this section of
the boundary the temperature T is zero or a non-zero constant. Examples of problems of this
type include determining the two dimensional temperature and flux fields around subterranean
cavities with the earth’s surface being taken to be the plane x2 = 0.

6.2. ANTIPLANE DEFORMATIONS OF ANISOTROPIC ELASTIC MATERIALS

In (1) put N = 1, φ1 = u and a1i1j = λij for i, j = 1, 2 where, referred to a Cartesian frame
Ox1x2x3, u(x) denotes the antiplane displacement and the λij are the elastic coefficients which
satisfy the symmetry property λij = λji . In this case (1) becomes the equation governing
antiplane deformations of inhomogeneous elastic materials. The equation is formally identical
to (29) so that the previous analysis for plane anisotropic thermostatics may be employed for
antiplane elasticity with the temperature T replaced by the antiplane displacement u, the λij

interpreted as the elastic coefficients and the P1 as the antiplane stress. Hence it is possible
to use the integral equation (35) together with the fundamental solution (32) to solve a wide
class of antiplane elastic boundary-value problems for inhomogeneous materials for which
the elastic coefficients λij (x) vary with position according to the Equation (30). Also the
Green’s function (38) may be used in the integral equation to solve the class of antiplane
elastic problems for which the elastic material adheres to a rigid plane surface which coincides
with the x2 = 0 plane.

6.3. GENERALISED PLANE DEFORMATIONS OF ANISOTROPIC ELASTIC MATERIALS

In (1) put N = 3, φi = ui and aijkl = cijkl for i, j, k, l = 1, 2, 3 where, referred to a coordin-
ate frame Ox1x2x3, ui(x) denotes the displacement and the cijkl are the elastic coefficients
which satisfy the symmetry property cijkl = cjikl = cijlk = cklij = cilkj . Further, they vary
with position according to the equation

cijkl(x) = c
(0)
ijklg(x), (39)

where the c
(0)
ijkl are constants. Thus with N = 3 and the dependent variable and coefficients so

interpreted the analysis of Sections 2 through 5 may be applied to obtain a boundary-integral
equation which is suitable for the numerical solution of generalised plane boundary-value
problems for the class of inhomogeneous elastic materials that satisfy the above symmetry
conditions and the Equation (39).

For generalised plane elastostatic problems the Green’s function (38) could be usefully
employed for problems of this type involving deformations of materials which adhere to a
rigid plane boundary. Examples include deformations of an elastic layer adhering to a rigid
foundation where the interface is taken to be the plane x2 = 0.
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7. Final remarks

A fundamental solution and a Green’s function have been obtained for a system of N second-
order elliptic partial differential equations in N dependent and two independent variables.
The variable coefficients in the equations are each a multiple of the solution of a system of
N second-order elliptic partial differential equations in one dependent and two independent
variables. The fundamental solution and the Green’s function are in forms which readily yield
numerical values and hence are suitable for use in the relevant boundary-integral equation for
the purpose of obtaining the numerical solution to a wide class of particular boundary-value
problems.

It should be noted that a number of authors have considered the use of boundary-integral
equations for the solution of problems governed by particular partial differential equations
which are special cases of the general system (1). For Darcy’s flow Cheng [4] directly uses the
relevant special case of the fundamental solution given by (20) and (21) to facilitate the nu-
merical solution of a number of boundary-value problems. Other examples involving special
cases of (1) are the papers of Clements and Budhi [5], Azis and Clements [6], Ang, Kusuma
and Clements [7], Kessab and Divo [8], Shaw [9] and Shaw and Gipson [10]. In these papers
various techniques are employed to obtain a suitable boundary-integral equation together with
the associated fundamental solution for problems governed by a either a single or a system
of two second-order elliptic equation with variable coefficients. In some of these cases the
equation under consideration falls within the general class given by (1) but the coefficients
are not constrained by the condition (8). In such cases the fundamental solution, while being
relevant for a more general class of coefficients, is much more complex and difficult to use for
numerical computations than the fundamental solution (20).
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